
Advanced Quantum Mechanics: Course Summary

Rex Godby, Department of Physics, University of York

Introduction

This guide accompanies my Year 4 course “Advanced Quantum Mechanics”. It is a summary of
the main results which is intended to

• emphasise which results are more fundamental or are applications of especially wide
significance;

• reiterate the structure of the course;

• provide a convenient reference to earlier results when learning the later parts of the
course or doing problems.

It is not a comprehensive description of the course, and should not be taken to imply which
material is examinable. Equally, it is not a list of results that have to be memorised: many of
the results here may (with practice) be derived quite easily from a small number of the most
fundamental principles.

It is not intended to be a self-contained document. For example, the definitions of some sym-
bols and quantities are not given (but are, of course, to be found in your lecture notes or a
textbook). Do remember also the useful departmental Table of Constants and Mathematical
Formulae (as provided to students in exams), which is available on the Physics Wiki page
https://wiki.york.ac.uk/display/Physics/Assessment+and+Feedback.

I’d welcome any suggestions for additions or other changes.

1 Time-Dependence

1.1 Time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ .

1.2 Cases (a) and (b): Time-independent Hamiltonian

Case (a): If the system is in an eigenstate φj of the Hamiltonian at time t = 0,

ψ(r, t) = e−iEjt/h̄ φj(r) .

Case (b): If the system is in a general quantum state at time t = 0, which is given in terms of
the eigenfunctions φj as

ψ(r, t=0) = ∑
j

cj φj(r) ,
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then, because we may superpose solutions for a linear differential equation,

ψ(r, t) = ∑
j

cj e−iEjt/h̄ φj(r) .

1.3 Case (c): Time-dependent Hamiltonian; Time-dependent perturbation theory

The wavefunction of a system is initially an eigenfunction, φs, of its time-independent Hamilto-
nian Ĥ0 with energy Es. At time t = 0 the Hamiltonian acquires an additional time-dependent
part ∆Ĥ(r, t). The wavefunction at a later time is to be written in terms of the eigenfunctions
φj and eigenvalues Ej of the unperturbed Hamiltonian Ĥ0 as

ψ(r, t) = ∑
j

cj(t) e−iEjt/h̄ φj(r) .

We used the time-dependent Schrödinger equation to show that the coefficients ck (k 6= s) are
given, to first order in ∆Ĥ, by1

ck(t) =
1
ih̄

t∫
t′=0

e+iωkst′ 〈φk
∣∣∆Ĥ(r, t′)

∣∣ φs
〉

dt′ ,

where ωks = (Ek − Es)/h̄. This is the result for first-order time-dependent perturbation theory
(i.e. first order in ∆Ĥ).

In the case where the perturbing Hamiltonian takes the oscillatory form ∆Ĥ(r, t) = ∆V(r) cos(ω0t)
(t > 0), we derived Fermi’s golden rule for the probability of being in a final state k with energy
Ek = Es + h̄ω0,

P =
πt
2h̄
|〈φk|∆V(r)|φs〉|2 g(Ek) ,

where g is the density of states at the energy mentioned, corresponding to absorption. (There
is, of course, a corresponding expression for Ek = Es − h̄ω0, stimulated emission.)

Selection rules arise from the fact that some transition rate are zero (at least in first-order TDPT),
by virtue of the symmetry of the matrix element

1.4 Ehrenfest’s theorem

Starting from the time-dependent Schrödinger equation, we showed that, if Â is an Hermitian
operator, and Ĥ is the Hamiltonian, then the rate of change of the expectation value of the
corresponding variable is

d
dt
〈

Â
〉
=

1
ih̄
〈[

Â, Ĥ
]〉

+

〈
∂Â
∂t

〉
.

2 The Classical Limit

Using Ehrenfest’s theorem is it easy to prove that

d
dt
〈 p̂〉 = 〈 f 〉 ,

1Reminder of the Dirac notation which I often use:
〈
φk
∣∣∆Ĥ(r, t′)

∣∣ φs
〉

stands for
∫

φ∗k (r)∆Ĥ(r, t′)φs(r)d3r, where
the integral is over all space
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where f is the force operator − ∂V
∂x , and

d
dt
〈x〉 = 〈 p̂〉

m
,

which together comprise

m
d2

dt2 〈x〉 = 〈 f 〉 .

In the limit when a wavepacket becomes sufficiently localised in space, and sufficiently well-
defined in momentum, that each expectation value may both be replaced by “the” value, this
is Newton’s second law F = mẍ: classical mechanics.

3 Many-particle Quantum Mechanics

3.1 Generalised Pauli principle

For a system of identical bosons, Ψ must be symmetric with respect to exchange of any pair of
particle coordinates, and for fermions, antisymmetric. We shall mostly talk about fermions here.
For identical non-interacting fermions, this leads to the familiar requirement that each single-
particle state (describing the spatial and spin parts of the single-particle wavefunction) cannot
be occupied by more than one fermion.

3.2 Many-particle wavefunctions

The Hamiltonian for an atom comprising two interacting electrons plus a fixed nucleus of
atomic number Z takes the form

Ĥ =

[
− h̄2

2m
∇2

1 −
h̄2

2m
∇2

2

]
+

[
− Ze2

4πε0r1
− Ze2

4πε0r2

]
+

[
λe2

4πε0|r1 − r2|

]
where the constant λ normally has the value 1.

The terms in square brackets represent, respectively, the kinetic energy of the two electrons, the
potential energy of the two electrons due to their attraction to the nucleus, and the potential
energy of the two electrons due to their mutual repulsion. (For atoms with more electrons, the
last term would involve a sum over all pairs of electrons, counting each pair just once.)

Finding the eigenfunctions of this Hamiltonian is already very hard; in particular it cannot
be done analytically. But if we ignored interaction by setting λ = 0, it would become far sim-
pler, because the method of separation of variables can be used to separate the N-electron
problem into N one-electron problems: solving the Schrödinger equation for a single parti-
cle is easy. In this case the N-fermion wavefunction is simply a Slater determinant (in order
to achieve the required exchange-antisymmetry) of the N lowest-energy solutions of the one-
electron Schrödinger equation: see next paragraph.

In general, a Slater determinant constructed, for N identical fermions, from N selected mem-
bers of a complete set of normalised, orthogonal one-particle functions {ψ1, ψ2, ...} is given by

1√
N!

∣∣∣∣∣∣∣∣∣
ψi(x1) ψj(x1) · · · ψl(x1)
ψi(x2) ψj(x2) · · · ψl(x2)

...
...

. . .
...

ψi(xN) ψj(xN) · · · ψl(xN)

∣∣∣∣∣∣∣∣∣ .
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Because of the alternating signs that form part of the definition of a determinant, a Slater deter-
minant is automatically exchange-antisymmetric, e.g. Ψ(x1, x2, x3...) = −Ψ(x2, x1, x3...).

Such a Slater determinant used for identical non-interacting fermions may be thought of as
A{ψi(x1)ψj(x2) · · ·ψl(xN)}, where A denotes “antisymmetrise with respect to exchange of
particle coordinates, and normalise”. Similarly for identical non-interacting bosons the eigen-
states of the Hamiltonian may be thought of as S{ψi(x1)ψj(x2) · · ·ψl(xN)}, where S denotes
“symmetrise with respect to exchange of particle coordinates, and normalise”; in this case it’s
allowed to have the same ψi for more than one electron.

3.3 Hartree-Fock theory

The idea is to approximate the actual many-electron wavefunction by a Slater determinant (as
a trial wavefunction in the variational principle), but to choose the functions ψ1, ψ2, etc., so as
to minimise the expectation value of the full Hamiltonian (including interaction, i.e. λ = 1 in
the previous subsection), which, according to the variational principle2, then provides a good
estimate of (and an upper bound on) the ground-state total energy, E0. The resulting equations
for the ψi are known as the Hartree-Fock equations:(

− h̄2

2m
∇2 + vext + vH + Σ̂x

)
ψi(x) = εψ(x) .

These have the form of the one-electron Schrödinger equation, but with the actual potential
due to the nuclei vext replaced with an effective potential which further includes

• the Hartree potential which is the electrostatic potential due to the average charge density
of all the electrons:

vH(x) =
∫ N

∑
j=1
|ψj(x′)|2u(|x− x′|)dx′

where u is the Coulomb repulsion e2/4πε0|r1 − r2|;

• the non-local potential known as the “exchange operator”:

Σ̂xψi(x) = −
∫ N

∑
j=1

ψj(x)ψ∗j (x′)δσi ,σj u(|x− x′|)ψi(x′)dx′ ;

where the δσi ,σj restricts the sum to electrons i and j with the same spin orientation.

The Hartree-Fock equations need to be solved self-consistently, for the N lowest wavefunc-
tions and eigenvalues, which are then reinserted into the density expression (for the Hartree
potential) and the Fock operator (for the exchange operator), and this cycle is repeated until
self-consistency is reached in the wavefunctions.

3.4 Density-functional theory

Hohenberg-Kohn theorem: There exists a universal functional F[n] such that, when E[n] =
F[n] +

∫
n(r)vext(r)d3r is minimised with respect to variations in n, the value of E is the ground-

state energy E0, and this occurs at the density function n0(r), the exact ground-state electron
density for external potential vext(r).

2Variational principle:
〈
ΨT|Ĥ|ΨT

〉
− E0 ≥ 0, where ΨT is any normalised trial wavefunction (exchange-

antisymmetric in the case of identical fermions), and the left-hand side is zero plus terms of second order in the
error in ΨT, so that a rather rough estimate, ΨT, can give a rather accurate estimate of E0.
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Using this idea, Kohn and Sham showed that this minimisation could be performed by solving
the Kohn-Sham equations self-consistently, in a similar way to the Hartree-Fock equations:(

− h̄2

2m
∇2 + vext + vH + vxc

)
ψi(x) = εψ(x) .

where vH has the same definition as in Hartree-Fock theory, and the exchange-[and-]correlation
potential vxc(r) is a functional of the electron density that needs to be approximated.

The usual approximations are the local density approximation (which assumes each point in
space to be part of a homogeneous electron gas) and the generalised gradient approximation
(which takes some account of the gradient of the density as well as its local value). They often
work pretty well for ground-state properties of the system, but they are not perfect.

4 Second Quantisation

4.1 Creation and annihilation operators

In second quantisation for a system of identical bosons, the creation and annihilation opera-
tors â†

k and âk are defined in terms of their effects on a normalised many-boson wavefunction
formed from exchange-symmetrised products of members of a basis set {φ1, φ2, φ3, ...} of nor-
malised, orthogonal one-particle functions:

â†
k |n1, n2, n3, ..., nk, ...〉 =

√
nk + 1 |n1, n2, n3, ..., nk+1, ...〉

âk |n1, n2, n3, ..., nk, ...〉 =
√

nk |n1, n2, n3, ..., nk−1, ...〉 ,

where ni is the number of particles in state i. â†
k adds a particle to the system, and âk annihilates

a particle.

In second quantisation for a system of identical fermions, the wavefunction used for the defi-
nition |n1, n2, n3, ..., nk, ...〉 is an normalised exchange-antisymmetrised sum of products of the ψi,
i.e. a Slater determinant of the form given in the previous section, and (for the wavefunction to
be non-zero) the nk are zero or one; â†

k adds a particle to the system by creating a new column
φk as the left-most column (and adding the extra row and changing the normalisation factor to
1/
√
(N + 1)!), and âk does the reverse. (If â†

k operates on a state in which a particle is already
in state k, or âk operates on a state in which no particle is in state k, the value 0 results.)

For bosons we derived the commutation relations [â†
k , â†

l ] = [âk, âl ] = 0 ; [âk, â†
l ] = δkl ,

and for fermions the anticommutation relations {â†
k , â†

l } = {âk, âl} = 0 ; {âk, â†
l } = δkl .

For both bosons and fermions [âj, â†
k âl ] = âl δkj and [âj, â†

q â†
r âs ât] = â†

r âs ât δqj + â†
q ât âs δrj.

4.2 Creation and annihilation field operators

A particular set of annihilation and creation operators ψ̂†
σ(r) and ψ̂σ(r) that create and destroy

particles at point r with spin σ. The Hamiltonian can be written in terms of any chosen set of
annihilation and creation operators, but the field operators are especially convenient because
of their focus on position.

4.3 Heisenberg picture

If Û(t) is the time-evolution operator that, through the time-dependent Schrödinger equation,
propagates the wavefunction from time 0 to time t, i.e. Û(t)ψ(0) = ψ(t), can define for an oper-

5



ator Â the corresponding operator in the Heisenberg picture3 ÂH(t) = Û†(t)ÂÛ(t), moving all
the time-dependence out of the wavefunction and into the operators. The equation of motion
of ÂH is

d
dt

ÂH(t) =
1
ih̄
[ÂH(t), Ĥ] +

(
∂Â
∂t

)
H

(the last term entering only if Â happens to have built-in time-dependence) which can be used
to determine the equation of motion of the annihilation and creation operators, and in particu-
lar in terms of the field operators.

4.4 Uses of second quantisation

In order to formulate many-body perturbation theory, the equations of motions just mentioned
can be used to determine the equation of motion of the Green’s function G (which describes
the propagation of an added particle, and is defined in terms of the field operators). This leads
to a set of coupled equations which, when solved iteratively, allows G to be calculated to a
given order in (e.g.) the particle-particle interaction strength, without explicitly needing to
consider many-particle wavefunctions. G is related to experimental quantities of interest, e.g.
electron spectroscopy.

In quantum electrodynamics, similar field operators represent not the creation and destruction of
particles, but the creation and destruction of a quantum of energy in a mode of the electromag-
netic field, and field operators correspond to the classical fields E and B, or alternatively the
potentials A and Φ. These “field” field operators together with the “particle” field operators
appear in the overall Hamiltonian for electromagnetic fields interacting with charged particles
(i.e. matter). The electromagnetic field is now properly quantised, and spontaneous emission
(of energy from the electron into the EM field) is described, as well as stimulated emission and
absorption that were already described when the EM field was treated classically.

Rex Godby, October 2019 (v1.1)

3The more familiar wavefunctions and operators are known as the “Schrödinger picture”.
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